

Hangman

One Project in Detail

In this section, we use Pencil Code to make a game of hangman from
scratch.

It takes a couple hours to learn enough programming to make a game of
hangman.

We will learn about:
Memory and naming
Computer arithmetic

Using functions
Simple graphics
How to make a program
Input and output
Loops and choices

Delays and synchronization
Connecting to the internet

At the end we will have a game we can play.

1. Running Pencil Code

Go to pencilcode.net.

Click on "Let's Play!"

The screen should look like this:

The left side of the screen is where you type in your program, and the right
is where programs run. The lower right corner is a test panel where you

type code and run it right away.

While exploring the projects in this book, you can also use the test panel in
the lower right corner to ask for help with how commands work.

 test panel (type help for help)

> help

 help is available for: bk cg cs ct fd ht if ln lt rt st abs cos dot

 ...

>

The characters that you should type will be highlighted.

http://pencilcode.net/

2. Keeping a Secret

We will begin by working in the test panel.

CoffeeScript can remember things. Let's tell it a secret word.

Type the blue words below into the test panel.

 test panel (type help for help)

> secret = 'crocodile'

See what happens when you press Enter.

 test panel (type help for help)

> secret = 'crocodile'

 "crocodile"

>

Reveal your secret by typing "write secret".

> write secret

>

Check the upper right panel!

Typing just the name in the test panel will reveal the word there.

> secret

 "crocodile"

>

Now try something CoffeeScript doesn't know. Try typing "number".

> number

 ▶number is not defined

>

Don't worry. This is fine. You just need to teach CoffeeScript what

"number" is and try again.

> number = 43

 43

> number

 43

>

3. Computers are Fine Calculators

A computer is better than any calculator at doing math. Let's try.

> 2+33+66

 101

In CoffeeScript, plus and minus use the usual symbols + and −. Times and

divide are done using the * and / symbol.

> 33333333 * 44444444

 1481481451851852

Named values can be used in formulas.

> n=123456789

 123456789

> n*n*n

 1.8816763717891548e+24

The e+24 at the end is the way that large numbers are written in
CoffeeScript. It means 1.8816763717891548 × 10 . CoffeeScript

calculates numbers with 15 digits of precision.

There are several ways to change a number. For example, += changes a
variable by adding to it.

> n += 1

 123456790

> n

 123456790

>

Some symbols to know:

code meaning

+ plus

− minus

* times

/ divide

code meaning

x = 95 save 95 as x

x is 24 is x equal to 24?

x < 24 is x less than 24?

x > 24 is x more than 24?

code meaning

word.length the length of word

String(num) turns num into a string of digits

Number(digits) makes a number from a string

n += 1 change n by adding one

These operations can be combined.

CoffeeScript obeys the same order of operations used in Algebra.

What will it do when we say "String(99 * 123).length"?

What will it say for (2 * 3 + 3 * 5) / 7 - 1?

Try your own fancy formulas. Don't worry if you get errors.

24

4. Strings and Numbers

What do you think happens when we try to do addition with words?

> 'dog' + 'cat'

 dogcat

> 'dog' + 5

 dog5

> 34 + 5

 39

> '34' + 5

 345

>

When we put something inside quotes, CoffeeScript treats it like a string of
letters, even if it is all digits! That is why '34' + 5 is 345. Quoted values like

this are called "strings."

The Number() function can be used to convert a string to a number, so that

we can do ordinary arithmetic with it.

The String() function is opposite, and turns numbers into strings.

> Number('34') + 5

 39

> String(34) + 5

 345

> Number('dog') + 5

 NaN

>

If we try to convert a string to a number in a way that does not make sense,

we get NaN, which stands for "Not a Number".

5. Creating Graphics

In Pencil Code, we can create graphics by using the turtle. There are five
basic turtle functions:

code meaning

pen red chooses the pen color red

fd 100 moves forward by 100 pixels

rt 90 turns right by 90 degrees

lt 120 turns left by 120 degrees

bk 50 slides back by 50 pixels

In the test panel, enter two commands to draw a line:

> pen red

> fd 50

>

The reference at the end of this book lists many other colors that can be
used. To stop drawing, use "pen null" to select no pen.

Try turning the turtle and drawing another line. Notice that rt turns the
turtle in place, and we need to move the turtle with fd to draw a corner.

 ...

> rt 90

> fd 100

>

Read about the rt function using help:

> help rt

 rt(degrees) Right turn. Pivots clockwise by some degrees: rt 90

 rt(degrees, radius) Right arc. Pivots with a turning radius:

 rt 90, 50

>

If we give a second number to rt, the turtle will move while turning and
form an arc. Try making a circle:

 ...

> rt 360, 30

>

Remember to put a comma between the two numbers.

6. Making our First Program

We are ready to set up a hangman game. In the the editor on the left side of
Pencil Code:

Select and erase the example program text in the editor.
Now type the following program into the editor.

pen blue

fd 150

rt 90

fd 50

rt 90

fd 20

Press the triangular play button!

If it doesn't work, check the typing carefully and try again. Things to watch
out for:

Spell each function name correctly and in lowercase.
Do not indent any of the lines of this program.
Remember to put a space after the function names.

Each time we run the program, it clears the screen and starts again.

Now, rename the program from "first" to "hangman" by editing the name
next to the pencil. Save it with the button at the top right.

A website will be created with your account name. If I choose the account

name "newbie," a website is created at "newbie.pencilcode.net".

Once you have saved the program with the name "hangman," it is available

at two different addresses on pencilcode:
http://yourname.pencilcode.net/edit/hangman - this is where anyone
can see and edit your program, but you need your password to save
any changes.

http://yourname.pencilcode.net/home/hangman - here is where you
can share and run your program without showing the code.

7. Hurry Up and Wait

Write a welcome message after drawing the hangman shape:

pen blue

fd 150

rt 90

fd 50

rt 90

fd 20

write 'time to play hangman'

Notice that the Pencil Code Turtle is as slow as a turtle! Unless we speed it

up with the speed function, the turtle takes its own slow time long after we
have asked it to move, and the welcome message appears before the turtle
is finished.

We can do two things to help with the slow turtle:
Change the number of moves it makes per second using "speed."
Ask the program to wait for the turtle, using "await done defer()."

speed 10

pen blue

fd 150

rt 90

fd 50

rt 90

fd 20

await done defer()

write 'time to play hangman'

Now the turtle moves faster, and the program waits until the turtle is done
before writing the welcome message.

A couple things to know:
Do not use a space between defer and the parentheses "defer()".
We can make the turtle move instantly by using "speed Infinity".

Even if you have programmed before, await/defer may be new to you.
These keywords create continuations, and they are part of Iced CoffeeScript.
To explore how they work in more detail, look up Max Krohn's Iced
CoffeeScript page online.

time to play hangman

time to play hangman

8. Using "for" to Repeat

We can repeat steps in a program with the "for" command.

Try adding three lines to the end of our program so that it looks like this:

write 'time to play hangman'

secret = 'crocodile'

for letter in secret

 write letter

You should see this:

time to play hangman

c

r

o

c

o

d

i

l

e

The program is saying: for every letter in the secret, write letter. So the
computer repeats "write letter" nine times, once for each letter.

If it doesn't work, check the program and make sure the line after the for is
indented; that is how CoffeeScript knows which line to repeat.

Once you have the hang of it, keep the word secret by changing the

program to write underscores instead of letters:

write 'time to play hangman'

for letter in secret

 append '_ '

Notice how "append" instead of "write" puts text on the same line instead of
starting a new line each time:

time to play hangman

_ _ _ _ _ _ _ _ _

9. Using "if" to Choose

In our hangman game, we should show where any guessed letters are. To
decide whether to print a blank line or a letter, we will need to use "if" and
"else".

Add four new lines to our program:

write 'time to play hangman'

secret = 'crocodile'

hints = 'aeiou'

for letter in secret

 if letter in hints

 append letter + ' '

 else

 append '_ '

Don't forget to line everything up, and remember to save it.

What happens when you run it? It reveals all the letters in "hints": all the
vowels.

Our screen looks like this:

time to play hangman

_ _ o _ o _ i _ e

Here is how it works.

The line "if letter in hints" makes a choice.
If the letter is among our hints, it appends the letter together with a

space after it.
Otherwise ("else") it appends a little underscore with a space after it.

Since the whole thing is indented under the "for letter in secret," this choice
is repeated for every letter.

Check the spelling and spacing and punctuation if you get errors. Take
your time to get it to work.

10. Input with "read"

Our game is no good if players can't guess. To let the player guess we will

use a function called "read"

It works like this:

await read defer guess

This shows an input box and puts the program on hold until the user enters
a value for "guess".

The "await" and "defer" commands work together to pause and resume the
program while waiting for an answer to be entered.

await tells the program to pause after starting the read function.
defer tells read what to do after it is done: it continues the program
after saving the answer as "guess."

Try adding two lines to the program to add an await read, like this:

write 'time to play hangman'

secret = 'crocodile'

hints = 'aeiou'

write 'guess a letter'

await read defer guess

hints += guess

for letter in secret

 if letter in hints

 append letter + ' '

 else

 append '_ '

The "hints += guess" line adds the guess to the string of hints. If the string
of hints was "aeiou" and the new guess is "c", then the string of hints will
become "aeiouc".

Let's run it.

time to play hangman

guess a letter

⇒ c

c _ o _ o _ i _ e

When we run the program, it will show us where our guessed letter
appears.

11. Using "while" to Repeat

We need to let the player take more than one turn.

The "while" command can repeat our program until the player is out of
turns.

write 'time to play hangman'

secret = 'crocodile'

hints = 'aeiou'

turns = 5

while turns > 0

 for letter in secret

 if letter in hints

 append letter + ' '

 else

 append '_ '

 write 'guess a letter'

 await read defer guess

 hints += guess

 turns -= 1

Indent everything under the "while" command to make this work. The

editor will indent a whole block of code if you select it all at once and press
the "Tab" key on the keyboard. "Shift-Tab" will unident code.

Also move the guessing after the hint instead of before.

The command "turns -= 1" means subtract one from "turns," so if it used to
be 5, it will be 4. Then the next time around it will be 3 and so on. When

turns is finally zero, the "while" command will stop repeating.

Try running the program. Does it work?

Any time we want to see the value of a variable, we can type its name into
the test panel.

 test panel (type help for help)

> hints

 aeioucsn

> turns

 2

>

12. Improving our Game

We can already play our game. Now we should fix it up to make it fun.
The player should win right away when there are no missing letters.
The player should only lose a turn on a wrong guess.

When the player loses, the game should tell the secret.

Here is one way to improve it.

write 'time to play hangman'

secret = 'crocodile'

hints = 'aeiou'

turns = 5

while turns > 0

 blanks = 0

 for letter in secret

 if letter in hints

 append letter + ' '

 else

 append '_ '

 blanks += 1

 if blanks is 0

 write 'You win!'

 break

 write 'guess a letter'

 await read defer guess

 hints += guess

 if guess not in secret

 turns -= 1

 write 'Nope.'

 write turns + ' more turns'

 if turns is 0

 write 'The answer is ' + secret

Each time the word is printed, the "blanks" number starts at zero and

counts up the number of blanks. If it ends up at zero, it means there are no
blanks. So the player has guessed every letter and has won! In that case, no
more guesses are needed, so the "break" command breaks out of the
"while" section early.

The "if guess not in secret" line checks if the guess was wrong. We only
count down the "turns" if our guess was wrong.

When we guess wrong, we also print a bunch of messages like "Nope" and
how many more turns we have. When we are wrong for the last time we
print the secret.

13. Making it Look Like Hangman

It will be more fun if we make our game look like Hangman.

All we need to do is draw parts of the poor hangman person when there is a

wrong guess. Try adding something like this to the wrong guess part:

...

 write 'Nope.'

 write turns + ' more turns'

 if turns is 4 then lt 90; rt 540, 10; lt 90

 if turns is 3 then fd 20; lt 45; bk 30; fd 30

 if turns is 2 then rt 90; bk 30; fd 30; lt 45; fd 30

 if turns is 1 then rt 45; fd 30

 if turns is 1 then fd 30

 if turns is 0

 bk 30; lt 90; fd 30

 await done defer()

 write 'The answer is ' + secret

The semicolons (;) are just a way to put more than one step on the same
line. Notice when putting the "if" on the same line as the commands to run,
we must use the word "then" between the test and the commands.

Try making variations on the hangman drawings for each step.

Whenever we want to pause the program to wait for the turtle to finish
drawing, we can use "await done defer()". This pauses the program and
tells the done function to resume the program after drawing has
completed.

14. Picking a Random Secret

The only problem with the game is that it always plays the same secret

word. We should use the random function to choose a random word.

Change the line that sets the secret so that it looks like this:

...

write 'time to play hangman'

secret = random ['tiger', 'panda', 'mouse']

hints = 'aeiou'

...

The square brackets [] and commas make a list, and the random function
picks one thing randomly from the list.

Of course, we can make the list as long as we like. Here is a longer list:

...

write 'time to play hangman'

secret = random [

 'crocodile'

 'elephant'

 'penguin'

 'pelican'

 'leopard'

 'hamster'

]

...

We can write a long list on lots of lines like this, as long as we remember to
end any brackets [] that we started. When we list items on their own lines,
the commas are optional.

15. Loading a List from the Internet

There is a longer list of animals on the internet at the address
http://pencilcode.net/data/animals.

We can load this data in CoffeeScript using a jQuery function "$.get". (The
$ is the jQuery library, and it has more than one hundred functions that are

useful for web apps. Read more about jQuery at learn.jquery.com.)

The code looks like this:

...

write 'time to play hangman'

await $.get 'http://pencilcode.net/data/animals', defer animals

secret = random animals.split '\n'

...

What this means is:

await $.get 'http://pencilcode.net/data/animals', defer animals

Pause the program until the $.get is done.

await $.get 'http://pencilcode.net/data/animals', defer animals

Open up the address http://pencilcode.net/data/animals

await $.get 'http://pencilcode.net/data/animals', defer animals

Tell $.get to resume the program after putting the answer in "animals."

secret = random animals.split '\n'

The special string '\n' is the newline character between lines in a file.

secret = random animals.split '\n'

Split the animals string into an array, with one entry per line.

secret = random animals.split '\n'

Choose one item from the array randomly.

secret = random animals.split '\n'

Call this random word "secret".

http://pencilcode.net/data/animals
http://jquery.com/
http://learn.jquery.com/

16. The Whole Hangman Program

Here is the whole program from beginning to end:

speed 10

pen blue

fd 150

rt 90

fd 50

rt 90

fd 20

await done defer()

write 'time to play hangman'

await $.get 'http://pencilcode.net/data/animals', defer animals

secret = random animals.split '\n'

hints = 'aeiou'

turns = 5

while turns > 0

 blanks = 0

 for letter in secret

 if letter in hints

 append letter + ' '

 else

 append '_ '

 blanks += 1

 if blanks is 0

 write 'You win!'

 break

 write 'guess a letter'

 await read defer guess

 hints += guess

 if guess not in secret

 turns -= 1

 write 'Nope.'

 write turns + ' more turns'

 if turns is 4 then lt 90; rt 540, 10; lt 90

 if turns is 3 then fd 20; lt 45; bk 30; fd 30

 if turns is 2 then rt 90; bk 30; fd 30; lt 45; fd 30

 if turns is 1 then rt 45; fd 30

 if turns is 0

 bk 30; lt 90; fd 30

 await done defer()

 write 'The answer is ' + secret

17. Making it Yours

The best part of programming is adding your own personal style.

Try making the game so that it plays again automatically after you are

done. Can you make the game harder or easier? Can you give the player a
reward for winning?

Be sure to explore the functions in the online help, and experiment with the
examples in the remainder of this book. They will be a source of ideas.

For example, take a look at using sound effects and music. Try exploring the
"play" function, and search the internet to learn about ABC notation,
chords, waveforms, and ADSR envelopes.

Sometimes the simplest ideas can make a big difference. The "ct()" function
clears the text on the screen and the "cg()" function clears the graphics.
Maybe this could be used to make a two-player game where one person
comes up with the secret word, or where two players compete to guess the

word first.

You will quickly find that the real challenge of programming is not in the

code. The real challenge is in putting your imagination into the code.

Reference

Movement
fd 50 forward 50 pixels

bk 10 backward 10 pixels

rt 90 turn right 90 degrees

lt 120 turn left 120 degrees

home() go to the page center

slide x, y slide right x and forward y

moveto x, y go to x, y relative to home

turnto 45 set direction to 45 (NE)

turnto obj point toward obj

speed 30 do 30 moves per second

Appearance
ht() hide the turtle

st() show the turtle

scale 8 do everything 8x bigger

wear yellow wear a yellow shell

fadeOut() fade and hide the turtle

remove() totally remove the turtle

Output
write 'hi' adds HTML to the page

p = write 'fast' remembers written HTML

p.html 'quick' changes old text

button 'go',

-> fd 10

adds a button with
an action

read (n) ->

write n*n

adds a text input with
an action

t = table 3,5 adds a 3x5 <table>

t.cell(0, 0).

text 'aloha'

selects the first cell of the
table and sets its text

Other Objects
$(window) the visible window

$('p').eq(0) the first <p> element

$('#zed') the element with id="zed"

Drawing
pen blue draw in blue

pen red, 9 9 pixel wide red pen

pen null use no color

pen off pause use of the pen

pen on use the pen again

mark 'X' mark with an X

dot green draw a green dot

dot gold, 30 30 pixel gold circle

pen 'path' trace an invisible path

fill cyan fill traced path in cyan

Properties
turtle name of the main turtle

getxy() [x, y] position relative to home

direction() direction of turtle

hidden() if the turtle is hidden

touches(obj) if the turtle touches obj

inside(window) if enclosed in the window

lastmousemove where the mouse last moved

Sets
g = hatch 20 hatch 20 new turtles

g = $('img') select all as a set

g.plan (j) ->

 @fd j * 10

direct the jth turtle to go
forward by 10j pixels

Other Functions
see obj inspect the value of obj

speed 8 set default speed

rt 90, 50 90 degree right arc of radius 50

tick 5, -> fd 10 go 5 times per second

click -> fd 10 go when clicked

random [3,5,7] return 3, 5, or 7

random 100 random [0..99]

play 'ceg' play musical notes

Colors
white gainsboro silver darkgray gray dimgray black

whitesmoke lightgray lightcoral rosybrown indianred red maroon

snow mistyrose salmon orangered chocolate brown darkred

seashell peachpuff tomato darkorange peru firebrick olive

linen bisque darksalmon orange goldenrod sienna darkolivegreen

oldlace antiquewhite coral gold limegreen saddlebrown darkgreen

floralwhite navajowhite lightsalmon darkkhaki lime darkgoldenrod green

cornsilk blanchedalmond sandybrown yellow mediumseagreen olivedrab forestgreen

ivory papayawhip burlywood yellowgreen springgreen seagreen darkslategray

beige moccasin tan chartreuse mediumspringgreen lightseagreen teal

lightyellow wheat khaki lawngreen aqua darkturquoise darkcyan

lightgoldenrodyellow lemonchiffon greenyellow darkseagreen cyan deepskyblue midnightblue

honeydew palegoldenrod lightgreen mediumaquamarine cadetblue steelblue navy

mintcream palegreen skyblue turquoise dodgerblue blue darkblue

azure aquamarine lightskyblue mediumturquoise lightslategray blueviolet mediumblue

lightcyan paleturquoise lightsteelblue cornflowerblue slategray darkorchid darkslateblue

aliceblue powderblue thistle mediumslateblue royalblue fuchsia indigo

ghostwhite lightblue plum mediumpurple slateblue magenta darkviolet

lavender pink violet orchid mediumorchid mediumvioletred purple

lavenderblush lightpink hotpink palevioletred deeppink crimson darkmagenta

